ack2(0, y) -> s1(y)
ack2(s1(x), 0) -> ack2(x, s1(0))
ack2(s1(x), s1(y)) -> ack2(x, ack2(s1(x), y))
↳ QTRS
↳ DependencyPairsProof
ack2(0, y) -> s1(y)
ack2(s1(x), 0) -> ack2(x, s1(0))
ack2(s1(x), s1(y)) -> ack2(x, ack2(s1(x), y))
ACK2(s1(x), s1(y)) -> ACK2(s1(x), y)
ACK2(s1(x), s1(y)) -> ACK2(x, ack2(s1(x), y))
ACK2(s1(x), 0) -> ACK2(x, s1(0))
ack2(0, y) -> s1(y)
ack2(s1(x), 0) -> ack2(x, s1(0))
ack2(s1(x), s1(y)) -> ack2(x, ack2(s1(x), y))
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ QDPOrderProof
ACK2(s1(x), s1(y)) -> ACK2(s1(x), y)
ACK2(s1(x), s1(y)) -> ACK2(x, ack2(s1(x), y))
ACK2(s1(x), 0) -> ACK2(x, s1(0))
ack2(0, y) -> s1(y)
ack2(s1(x), 0) -> ack2(x, s1(0))
ack2(s1(x), s1(y)) -> ack2(x, ack2(s1(x), y))
The following pairs can be oriented strictly and are deleted.
The remaining pairs can at least be oriented weakly.
ACK2(s1(x), s1(y)) -> ACK2(x, ack2(s1(x), y))
ACK2(s1(x), 0) -> ACK2(x, s1(0))
Used ordering: Polynomial Order [17,21] with Interpretation:
ACK2(s1(x), s1(y)) -> ACK2(s1(x), y)
POL( ACK2(x1, x2) ) = max{0, x1 - 2}
POL( s1(x1) ) = x1 + 3
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
ACK2(s1(x), s1(y)) -> ACK2(s1(x), y)
ack2(0, y) -> s1(y)
ack2(s1(x), 0) -> ack2(x, s1(0))
ack2(s1(x), s1(y)) -> ack2(x, ack2(s1(x), y))
The following pairs can be oriented strictly and are deleted.
The remaining pairs can at least be oriented weakly.
ACK2(s1(x), s1(y)) -> ACK2(s1(x), y)
POL( ACK2(x1, x2) ) = max{0, x2 - 2}
POL( s1(x1) ) = x1 + 3
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ PisEmptyProof
ack2(0, y) -> s1(y)
ack2(s1(x), 0) -> ack2(x, s1(0))
ack2(s1(x), s1(y)) -> ack2(x, ack2(s1(x), y))